Central Venous Access Devices (CVAD) Clinical Practice Standard

1. Purpose

The purpose of this policy is to establish minimum practice standards for the insertion, management and removal of central venous access devices (CVAD) within the WA Country Health Service (WACHS).

Note: While this Clinical Practice Standard (CPS) is regarding venous access devices, a minor appendix relating to arterial ports is included in lieu of a separate policy document.

Excluded from this CPS:

- Peripheral IV access (refer to WACHS Peripheral Intravenous Cannulae Management Clinical Practice Standard (NEW))
- Specimen collection (blood sampling) via PIVC (refer to WACHS Specimen Collection (including Phlebotomy) and Pathology Results Clinical Practice Standard)
- Removal procedure for tunnelled central venous catheters.

For paediatrics refer to the Princess Margaret Hospital/Perth Children’s Hospital guidelines:

- Central Venous Access Device (CVAD) and Midline: Indications, Referral, Booking, Insertion and Maintenance Guideline
- Central Venous Access Device (CVAD) and Midline Management Procedure
- Taurolock® Prophylactic Lock for Central Venous Access Devices
- Tauroidine/Sodium Citrate Monograph for Administration Procedure

Removing unwanted variation in clinical practice and following best practice guidelines has been found to reduce inappropriate care (overuse, misuse and underuse) thus improving health outcomes, reducing preventable harm and decreasing wastage.

2. Scope

All medical, nursing, midwifery and medical imaging staff employed within the WACHS and any students in those fields working under the direct supervision of those staff.

All health care professionals are to work within their scope of practice appropriate to their level of training and responsibility.

Further information may be found via HealthPoint or the Australian Health Practitioner Regulation Agency as appropriate.
Learning resources related to CVADs can be accessed via the Learning Management System (tip: key word search “PICC” or “ports”) and additional resources can be found via the WACHS Safety and Quality Standard 3 – Preventing and Controlling Healthcare-Associated Infection intranet page.

3. Procedural Information

CVAD types
CVAD insertion
CVAD site assessment
CVAD line maintenance
CVAD blood sampling
CVC dressing and needle free connector (NFC) change
CVAD accessing, deaccessing, flushing and locking
CVAD removal
CVAD restoring patency – partial and complete occlusion
CVAD discharge and transfer management
PICC troubleshooting
CVC troubleshooting
Arterial ports

4. Considerations

A written signed consent form is required prior to the insertion of a CVAD. In certain situations there may be exceptions to this (e.g. in an emergency) – refer to the WA Health Consent to Treatment Policy OD 0657/16.

Do not use smaller than a 10ml syringe when accessing a CVAD to avoid excessive pressure and catheter rupture.

Staff are to avoid taking blood pressure on the arm with a PICC to avoid the risk of occlusion. If unavoidable, keep measurements to a minimum and only use manual cuff.

Not all CVADs are rated for power/pressure injection e.g. injection of contrast media for computed tomography (CT) scans. Staff are to check the lumen for the maximum flow rate that can be delivered or if the lumen indicates “No CT” (see Figure 1 and 2 for examples). If the lumen is not clearly rated for power injection, the device is not to be used for power injection and an appropriate gauge cannula needs to be inserted peripherally for use. Refer to Documentation section for requirements.

Figure 1: Example of pressure injection (PI) capability markings on hub of PICC (left) and CVC (right).

Courtesy of Teleflex Incorporated 36
CVAD line selection
The choice of a CVAD is made based on a patient's diagnosis, length and type of therapy, patient preference, clinical status, availability and quality of patient veins, operator experience and previous CVAD history.

All centrally inserted central venous access devices have the risks associated with insertion of bleeding, pneumothorax, arrhythmias and air embolism and carry a risk of catheter related blood stream infections31.

Reference can be made to the Cancer Nurses Society of Australia’s algorithm for selection of central venous access device. Additional information regarding CVAD line selection is available from eviQ.

CVAD catheter position
The tip of the CVAD should lie in the lower third of the superior vena cava (SVC) near the junction of the right atrium where the blood flow around the catheter tip is most rapid with the least resistance to flow.

Position of a CVC to be checked, when possible, using at least three techniques:
- Xray6
- Blood gas analysis
- Waveform transducing

The methods used to check catheter position need to demonstrate the device has not been placed arterially. Once the CVC is deemed venous, it can be confirmed for use by the proceduralist and documented on the MR179A WACHS Central Venous Access Device (CVAD) Insertion and Assessment Record.

Clinical incident reviews have shown that serious harm can occur when CVAD catheters placed in the artery have been used for patient treatment.

Refer to Patient Safety Matters - Central Venous Line Complication.
Patients with chronic renal impairment

Renal dialysis physician / nephrologist are to determine and document the most appropriate type and site for venous access devices considering future dialysis access requirements.

Refer to the Guideline for Vein Preservation in Chronic Kidney Disease provided by the Renal Health Network for recommendations related to patient education; peripheral venous access; central venous access; prolonged intravenous access; and antibiotic use.

The veins of the forearm, upper arm and subclavian are not routinely used for venous access, and are of critical importance for the creation of arterio-venous fistula for haemodialysis.

Seek advice from senior medical officer on admitting team, renal team, and/or anaesthesia service if support with obtaining venous access is required.

CVAD replacement: 30

- CVADs should only be replaced if clinically indicated under the direction of an Infectious Diseases (ID) team or if downgrading from a CVC to a PICC.
 - Routine replacement is not recommended unless inserted under conditions where strict asepsis was not maintained. 3,9
- If not all aseptic technique requirements are met (i.e. a breach occurs) during insertion (as per the insertion checklist on the MR179A) the CVAD it is to be replaced within 24 hours once the patient is clinically stable.
- If the patient is admitted with a CVAD in situ, confirm the insertion record.
 - If unable to find documentation request a review from the Medical team.
- If device is being removed for presumed catheter related blood stream infection (CRBSI) a new central device should not be reinserted for a minimum of 24 hours or as directed by advice of an Infectious Diseases team.

CVAD Rewiring: 30

- Routine rewiring of a PICC or CVC is not recommended and should only be done as clinically indicated
- Guidewire exchanges of PICC or CVC lines shall not occur in the presence of blood stream infection.

5. General Information

Central venous access devices (CVADs) allow for long term venous access and multiple infusions of fluids, blood products, drugs or parenteral nutrition. CVADs can be tunnelled or non-tunnelled or in the case of an implanted venous port; placed in a subcutaneous pocket and accessed using a non-coring needle. 31

CVADs can have single or multiple lumens; multiple lumens allow for independent access to simultaneously administer incompatible drugs/ fluids. CVADs may also be valved (closed) or non-valved (open). 31
The smallest gauge catheter with the least number of lumens is to be selected for the patient dependent on the therapeutic intent of the device. Types of CVADs are covered in Appendix 1: CVAD - Types.

Staff are to comply with the specific requirements in alignment with the WACHS Infection Prevention and Control Policy.

Ensure patient identification and procedure matching processes are undertaken.

Maintain patient privacy and dignity. Offer the presence of a chaperone where appropriate to patient and clinician requirements.

Provide the opportunity for an accredited interpreter and/ or Aboriginal Liaison Officer where appropriate to the patient’s language or communication requirements (see: WA Health System Language Services Policy).

Patient education

All patients will require education in relation to the inserted venous access device\(^1,2\). Patient, carer and/or family education to cover\(^31\):

- **PICCS** *(as per eviQ patient education information\(^31\)):
 - Avoid blood pressure monitoring from the arm that has the PICC line.
 - Prevention and management of mechanical phlebitis: patients should be encouraged to place a warm compress on the upper part of their arm for 20 minutes 3 times a day for 4 days after insertion.
 - Checking the exit site each day, and:
 - reporting any symptoms such as pain, redness, discharge, swelling, burning, stinging, pruritus, presence of a rash or leaking around the catheter exit site
 - palpating the exit site on top of the dressing for any tenderness.
 - What to do in the event that the catheter ruptures, fractures or cracks.
- **Ports**: How a port is accessed and any care while accessed.
- **All CVADs**:
 - Details of appropriate and readily accessible 24-hour medical and nursing contact to whom patients can direct queries.
 - Patients to be supplied with any printed information currently available and must be given the opportunity to ask questions. Refer to consumer information section for patient handout information available.

6. Potential Issues During or Post Procedure

- **During Insertion**: arterial injury, nerve damage, cardiac arrhythmias, haemorrhage, pneumothorax (CVC; Ports), arterial cannulation (CVC; Ports)
- **After insertion**: catheter related: occlusion, malposition, migration, bleeding, breakages, thrombosis, infection; risk of needle dislodgement (ports)*
Refer to appropriate troubleshooting appendices for actions in response to the above issues:

- Appendix 11: PICC – Troubleshooting
- Appendix 12: CVC – Troubleshooting

*Needle dislodgement in ports: The port would need to be re accessed and then the entire needle and giving set would need to be replaced.

7. Clinical Communication

Clinical Handover
Information exchange is to adhere to the Department of Health Clinical Handover Policy using the iSoBAR framework.

Critical Information
Critical information, concerns or risks about a patient are communicated in a timely manner to clinicians who can make decisions about the care.

Documentation
Failure to accurately and legibly record and understand what is recorded in patient health records contribute to a decrease in the quality and safety of patient care.

- Refer to WACHS Documentation Clinical Practice Standard
- MR179A WACHS Central Venous Access Device (CVAD) Insertion and Assessment Record
- MR179B WACHS CVAD Insertion Site Assessment Continuation Sheet
- MR179C WACHS CVAD Access/Dressings Continuation Sheet

A number of patients may have had insertion of their CVAD outside of a WACHS facility. An insertion information section is to be completed on the MR179B WACHS CVAD Insertion Site Assessment Continuation Sheet and the MR179C WACHS CVAD Access/Dressings Continuation Sheet. This information will assist staff with planning care associated with the type of device in situ.

For patients attending WACHS medical imaging departments, the injection rate used on CVADs is to be documented on the medical imaging request form or IV contrast patient questionnaire.

Consumer information
There are a number of ways consumers can obtain specific information relating to hospital admissions, transfers and discharge from hospital. Relevant documents can be located via:

- eviQ patient and carer resources:
 - Having treatment through a peripherally inserted central catheter (PICC)
 - Having treatment through a tunnelled (Hickman®) and non-tunnelled central venous catheter (CVC)
 - Having treatment through an implanted venous port (IVP/port)

If patient is being discharged home – refer to Appendix 9: CVAD – discharge and transfer management.
8. **Compliance Monitoring**

Monitor Aseptic Non-Touch Technique using the agreed WACHS audit tools related to insertion and access – frequency to be determined at the regional level using a risk assessment approach.

Failure to comply with this policy may constitute a breach of the WA Health Code of Conduct (Code). The Code is part of the Employment Policy Framework issued pursuant to section 26 of the *Health Services Act 2016* (HSA) and is binding on all WACHS staff which for this purpose includes trainees, students, volunteers, researchers, contractors for service (including all visiting health professionals and agency staff) and persons delivering training or education within WACHS.

WACHS staff are reminded that compliance with all policies is mandatory.

9. **Relevant Legislation**

Accessible via: Government of Western Australia ([State Law Publisher](https://www.law.wa.gov.au) or [ComLaw](https://www.comlaw.gov.au))

- Carers Recognition Act 2004
- Disability Services Act 1993
- Equal Opportunity Act 1984
- Equal Opportunity Regulations 1986
- Guardianship and Administration Act 1990
- *Health Practitioner Regulation National Law (WA) Act 2010*
- Occupational Safety and Health Act 1984
- Occupational Safety and Health Regulations 1996
- Privacy Act 1988
- State Records Act 2000

10. **Relevant Standards**

- National Safety and Quality Health Services (NSQHS) Standards:
 - Standard 3 Preventing and Controlling Healthcare Associated Infections Criteria 3.1, 3.2, 3.9, 3.10

11. **Related WA Health System Policies**

- Clinical Alert (Med Alert) Policy
- Clinical and Related Waste Management Policy
- Clinical Incident Management Policy
- Consent to Treatment Policy
- Insertion and Management of Peripheral Intravenous Cannulae in Western Australian Healthcare Facilities

Printed or saved electronic copies of this policy document are considered uncontrolled. Always source the current version from [WACHS HealthPoint Policies](https://www.wachs.health.wa.gov.au).
12. Relevant WACHS Policy Documents

- Cancer Institute NSW - Standard Cancer Treatments - eviQ - EUCP Policy
- Clinical Observations and Assessments Clinical Practice Standard (physiological, neurovascular, neurological and fluid balance)
- Decontamination of Diagnostic Ultrasound Transducers Clinical Practice Standard
- Documentation Clinical Practice Standard
- Infection Prevention and Control Policy
- Medication Administration Policy
- Specimen Collection (including Phlebotomy) and Pathology Results Clinical Practice Standard
- MR179A WACHS Central Venous Access Device (CVAD) Insertion and Assessment Record
- MR179B WACHS CVAD Insertion Site Assessment Continuation Sheet
- MR179C WACHS CVAD Access/Dressings Continuation Sheet

13. WA Health Policy Framework

- Public Health Policy Framework

14. Acknowledgement

Acknowledgment is made of the previous SMHS / WACHS site endorsed work used to compile the former Vascular Access Devices Clinical Practice Standard.

15. References

16. Definitions

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assistant</td>
<td>A medical officer or registered nurse who supports or aids the proceduralist, but does not physically take part in the procedure(^2)</td>
</tr>
<tr>
<td>Carer</td>
<td>Carers provide unpaid care and support to family members and friends who have a disability, mental illness, chronic condition, terminal illness, an alcohol or other drug issue or who are frail aged (Carers Australia, 2015)</td>
</tr>
<tr>
<td>Consumer</td>
<td>A person who uses, or may potentially use, health services. Depending on the nature of the health service organisation, this person may be referred to as a patient, a client, a consumer, a customer or some other term. Consumers also include families, carers, friends and other support people, as well as representatives of consumer groups</td>
</tr>
<tr>
<td>NFC</td>
<td>Needle free connector: a device that connects to the end of vascular catheters and enables catheter access for infusion and aspiration</td>
</tr>
<tr>
<td>Pressure Injection</td>
<td>The transient flow of a moderately viscous aqueous fluid (3-12 cP) injected via mechanical means capable of generating pressures up to or in excess of 300 psi through any one lumen of a vascular catheter at a flow rate that is measured in ml or cc per second rather than per minute or per hour (cP = centipoise [a dynamic viscosity measurement unit])</td>
</tr>
<tr>
<td>Proceduralist</td>
<td>Health care professional performing the central line insertion, who has undergone specific training and education to perform this procedure. The proceduralist must have undertaken an appropriate training program or be supervised during the procedure(^2)</td>
</tr>
<tr>
<td>Seldinger Technique</td>
<td>A method of percutaneous insertion of a catheter into a blood vessel or space, named after a Swedish Radiologist (Dr Sven-Ivar Seldinger). A needle is used to puncture the structure and a guide wire is threaded through the needle; when the needle is withdrawn, a catheter is threaded over the wire; the wire is then withdrawn, leaving the catheter in place</td>
</tr>
<tr>
<td>Supervisor</td>
<td>An experienced clinician with a high level of competence in central line insertion and a comprehensive understanding of the management of the potential complications(^2)</td>
</tr>
</tbody>
</table>
17. Appendices

Appendix 1: CVAD - types
Appendix 2: CVAD - insertion
Appendix 3: CVAD - site assessment
Appendix 4: CVAD - line maintenance
Appendix 5: CVAD - blood sampling
Appendix 6: CVC - dressing and needle free connector (NFC) change
Appendix 7: CVAD – accessing, deaccessing, flushing and locking
Appendix 8: CVAD - removal
Appendix 9: CVAD – restoring patency – partial and complete occlusion
Appendix 10: CVAD – discharge and transfer management
Appendix 11: PICC - Troubleshooting
Appendix 12: CVC - Troubleshooting
Appendix 13: Arterial Ports
18. Appendix 1: CVAD types

Types of CVADs

Non-tunnelled central venous catheters:
- Peripherally Inserted Central venous Catheter (PICC)
 - Non-valved:
 - Catheter inserted into the upperarm using ultrasound guidance via the antecubital fossa usually extending approx 50-60 cm into the basilic, cephalic or brachial veins with the tip of the line ideally positioned in the superior vena cava
 - 1-12 months long-term access
 - Single and multi-lumen
 - Valved:
 - Single and multi-lumen
 - Example - Groshong® or Power PICC
- Central Venous Catheter (CVC)
 - Catheter inserted percutaneously via the subclavian, internal or external jugular, or femoral veins extending approx 15-30 cm with the tip positioned within the superior or inferior vena cava
 - 1-3 weeks short-term access
 - Single and multi-lumen
 - Non-valved:
 - Open ended catheters and require clamping and positive pressure locking
 - May require locking with heparinised saline
 - Valved:
 - Closed end catheters
 - Have a valved opening and do not require clamping or locking with heparinised saline
 - Valved catheters allow the infusion of solutions and aspiration of blood but when not in use remain in a closed position preventing reflux of blood into the catheter.
- Vascath – non-valved
 - Single and multi-lumen
 - Indications: apheresis, haemodialysis

Figure 3: PICC placement
Tunnelled central venous catheter (Hickman®)

- Tunnelled catheters are intended for patients who may require longer-term central venous access.
- The most common sites for placement are the subclavian and jugular veins. The catheter is tunnelled subcutaneously and exits at a convenient site (usually on the chest wall) where it is secured (see Figure 4).
- There is a ‘cuff’ within the tunnel to allow for the adherence of fibrous tissue which helps to prevent accidental dislodgement and acts as a mechanical barrier to ascending bacteria.

Implanted ports

- Subcutaneously implanted devices designed to provide repeated access (suitable for at least 2000 accesses) to the vascular system for the delivery of chemotherapy, blood products, intravenous fluids and parenteral nutrition.
- Placed in the subclavian vein; however some are placed in the hepatic artery (arterial ports are discussed in Appendix 13).
- Venous ports (used commonly) exit into the superior vena cava and port body usually located on the upper chest. Arterial Ports (used less frequently) exit into the common hepatic artery and port body often found in the sternum, lower ribs or hip.
- Must be accessed using a non-coring needle and deaccessed and locked correctly and aseptically to ensure patency.
- Consist of a titanium or plastic port with a self-sealing septum, accessible by percutaneous needle puncture, and a radiopaque catheter usually made in a well-tolerated long-term substance – silicone or polyurethane.
- Most are single lumen, some have two lumens (to enable separate administration of incompatible drugs).
- Connection between the catheter and the port can either be sealed during the manufacturing process or made at the time of placement.

Additional information can be accessed via eviQ regarding central venous access device line selection and the types of devices available.
19. Appendix 2: CVAD insertion

Pre-Procedure Key Points

- Refer to the Australian and New Zealand Intensive Care Society, Central Line Insertion and Maintenance Guide for advice regarding percutaneous insertion of central lines in adults.
- Except in emergency situations, CVADs are best inserted in an area where maximum barrier precautions and strict aseptic non-touch technique can be maintained, and ultrasound guidance is available e.g. operating theatre, radiology department.
- CVAD insertion must be performed by clinicians who are trained to do so and in accordance with their individual scope of practice.
- If technical difficulty experienced either before or during insertion, liaise with or defer to a more experienced colleague.
- Proceduralist and Assistant to have a pre-procedure huddle to outline expectations as to how to alert to a breach during the procedure.
- Staffing for procedure:
 - A minimum of one staff member skilled to undertake the procedure.
 - Assistance will be required to maintain maximum barrier precautions.
- Refer to CVC placement information for placement checks.
- Radiological examination is important to confirm absence of any adverse events related to the catheter location e.g. pneumothorax.
- Once the CVAD is confirmed for use the proceduralist signs the MR179A WACHS Central Venous Access Device (CVAD) Insertion and Assessment Record.

Line attachments

- PICCs require a sutureless securement device.
- Each lumen of the CVAD requires a Needle Free Connector (NFC) to complete a closed system (except in high dependency areas where direct access may be indicated).
- NFC’s appropriate for CVADs include positive pressure valves or neutral pressure valves (negative displacement valves are not suitable).
- Slide clamps - do not routinely clamp lumen if not in use. Routine application of slide clamp when using positive pressure valves is discouraged as incorrect technique when discontinuing flush can contribute to blood reflux in lumen and occlusion of the line. The clamp is not to be removed from the device.
- Venous ports require specific non-coring needle to access – do not use a hypodermic needle to access a port.

Insertion monitoring

Consider the clinical condition of the patient and ensure patient monitoring equipment is available.

Monitor:

- Heart rate, blood pressure, respiratory rate and oxygen saturation.
- Cardiac monitoring (observing for potential cardiac arrhythmias).
- Pain and discomfort.
PORTS

Insertion of venous port device typically constitutes day surgery and is usually performed in radiology theatre or operating theatre. Can be carried out under general anaesthetic, local anaesthetic or sedative and local anaesthetic.

Manage patient according to the WACHS Pre and Post Procedural Management Clinical Practice Standard.

Clip chest hair around planned insertion site/port pocket if excessive. Do not shave the site.

On occasion, venous port insertion may be synchronised with major surgery.

Insertion of device involves creating the subcutaneous pocket, connecting the port body to catheter (if not pre-attached) and suturing the port body to fascia.

Ensure the device is flushed and locked with normal saline 0.9%, heparinised saline, heparin or Taurolock as prescribed and recommended by the manufacturer.

PICC/CVC

Equipment

Some sites may have specific pre-prepared packs to assist with CVC Insertion.

When considering using a combined chlorhexidine gluconate securement dressing, consult with product information for equipment requirements and procedure steps if utilised in preference to the dressing combination of:

- Sutureless securement device
- Chlorhexidine gluconate impregnated foam disk
- Sterile, transparent, semi-permeable IV dressing with site insertion details sticker.

You will need:

- Procedural trolley
- PICC/CVC set
- Epidural and draping pack (PICC) or CVC draping or basic ICU pack (CVC)
- Skin antiseptic of 2% chlorhexidine in 70% alcohol.

Note:

Serious chlorhexidine hypersensitivity can be a threat to life through anaphylaxis.

If use of chlorhexidine is contraindicated due to allergy/sensitivity, use Povidone Iodine 10% in 70% alcohol.

If use of alcohol is contraindicated, use 10% Povidone Iodine aqueous solution.

- Local Anaesthetic (+ 1x 3mL and 5mL syringes and 1x 21g and 25g needles if not in pre-prepared pack)
- Proceduralist PPE: surgical cap, mask and protective eye wear; Sterile gown, towel and gloves
- Assistant PPE: surgical cap and mask
- NFC for each lumen (unless direct connection to line is undertaken - critical care areas only)
- 2x 20mL pre-filled Sodium Chloride 0.9% syringes, if available (If not available use 20mL syringes, drawing up needle and Sodium Chloride 0.9% ampoules)
- Sutureless securement device
- Chlorhexidine gluconate impregnated foam disk
 - If patient has chlorhexidine allergy, consider use of silver impregnated antimicrobial silver disk around the insertion site
- Adhesive tape
- Ultrasound machine + sterile cover and sterile gel sachet
- Tubular bandage
- Sterile transparent, semi-permeable, bordered dressing
- Waterproof sheet (bluey)
- Additional equipment required for PICC insertion:
 - PICC set with appropriate number of lumens (as clinically indicated and depending on vessel size)
- Additional equipment required for CVC insertion:
 - CVC set with appropriate number of lumens as clinically indicated
 - Sterile gauze
 - Suture material and kit.

Pre-Insertion

1. Check consent, any medical imaging request forms as needed.
2. Medical Officer to check coagulation profile and full blood count, if indicated, and advise the proceduralist for consideration in context of the patient’s condition and medical plan
3. Assess the patient’s local anaesthetic and sedation requirements and arrange prescription as needed.
4. Patient does not need to fast unless having the procedure under a general anaesthetic
5. Assemble required equipment:
 - Setup using aseptic non-touch technique
 - Prime NFC
 - Check required medications: local anaesthetic and/or sedative
 - Set up ultrasound equipment
6. Position patient according to the device to be inserted:
 - PICC insertion - position supine and abduct arm 45-90° angle
 - CVC insertion - Supine head down position 10 degrees: if tolerated and clinically appropriate or supine (without hip flexion) for femoral approach.
7. Provide oxygen therapy if clinically indicated.
8. Ensure insertion site is free from hair (clip if required, not shaved).
9. Measure the patient from the proposed insertion site to the proposed proximal end site (PICC).
10. Assistant personnel responsibility is to commence the [MR179A WACHS Central Venous Access Device (CVAD) Insertion and Assessment Record](#) and observe procedure, complete the checklist and advise Proceduralist if a breach in the procedural requirements has occurred.

Excepting emergency cases, the proceduralist, supervisor or assistant is to stop the procedure if asepsis is breached and an appropriate course of action determined to limit the risk of infection to the patient. This may include the need to plan a re-insertion of the CVAD.

Procedure

11. Proceduralist to surgically scrub (also supervisor if present). Ensure to don gown, gloves, eye wear, cap and mask.

12. Clean insertion site with 2% chlorhexidine in 70% alcohol. **Allow to air dry** (no fanning)

13. Drape the area for insertion.

14. Administer local anaesthetic to site.

15. Insert device:
 - PICC - using ultrasound guidance insert using a modified [Seldinger technique](#)
 - CVC – using [Seldinger technique](#).

16. Secure the device.

17. Flush the device. **Refer to Appendix 7: CVAD – accessing, flushing, deaccessing and locking**

18. Dress insertion site. **Refer to Appendix 4: CVC - Dressing and Needle Free Connector (NFC) Change**

19. Dispose of equipment appropriately, remove gloves and perform hand hygiene.

Post-procedure

20. Perform and document patient observations as clinically indicated and to ensure safe post procedure progress. Monitor insertion site for excessive bleeding, escalate if indicated.

22. Arrange for post-insertion checks to confirm placement is not intra-arterial.

23. Once catheter confirmed for use, the Proceduralist is to sign the [MR179A WACHS Central Venous Access Device (CVAD) Insertion and Assessment Record](#) to confirm the CVAD catheter tip is in the correct position.

24. Educate patient regarding the device, care and maintenance – encourage the patient to monitor for any redness, swelling or pain around insertion site or associated limb and whether the dressing is loose, wet or soiled. Advise the patient to report these concerns to the health care facility caring for the device.
20. Appendix 3: CVAD site assessment

For all types of central venous access devices:

- Document details of assessment on the WACHS CVAD forms.
- Assess area surrounding device insertion site and associated limb from hand to neck prior to each access, at least eight hourly (as inpatient), during access or dressing changes or as clinically indicated for:
 - localised infection: tenderness, pain, redness and swelling
 - catheter position: signs of migration
 - securement and dressing integrity

If indications of localised infection are observed, escalate for medical officer review. Removal of the device will need to be considered in conjunction with a risk assessment of continuation of therapy utilising the current device. The outcomes and actions/ongoing management plan are to be documented in the patient’s health record.

- Assess patient for signs of systemic infection (sepsis): tachycardia, tachypnoea, pyrexia, and hypotension. Document on the appropriate ORC, outpatient documentation or health record. If indicated, escalate for review and document actions/ongoing management plan
- Assess patency of lumens, refer to Appendix 7: CVAD – accessing, deaccessing, flushing and locking
- Determine ongoing need for device access.
- Provide patient education to report any changes to insertion site or discomfort.

21. Appendix 4: CVAD line maintenance

Label all intravenous administration lines as per the requirements of OD 0647/16 National Recommendations for User-Applied Labelling of Injectable Medicines, Fluids and Lines.

The catheter hub ⁴, administration set connection or injection ports are to be decontaminated with 2% chlorhexidine in 70% alcohol for a minimum of 20 seconds, longer if soiled and then allowed to air dry prior to every access.

If chlorhexidine in alcohol is contraindicated in the manufacturer’s instructions then either aqueous chlorhexidine gluconate or aqueous povidone iodine may be used.

Ensure specific therapies are infused through dedicated device lumens.

Unused Lumens

- To prevent lumens becoming blocked, use all lumens for infusions or transducer if possible.
- Unused lumens of PICCs and CVCs to be flushed weekly when not in use to maintain patency – consider more frequent flushing if occlusion issues exist.
- Unused lumens of implanted ported ports are to be locked 4 weekly.
• Blocked lumens to be closed with a red IV bung and clearly marked “Do Not Use” – discuss unblocking the lumen with the medical officer

Administration sets

Intravenous administration lines are single use items; they require routines standardised for replacement based on the following factors\(^2\):

- Type of solution infused
- Whether infusion continuous or intermittent
- Following suspected contamination
- Accidental disconnection

Disconnection and reconnection of administration sets (and haemofiltration):

- Discard and **do not** reuse intravenous (IV) administration sets when they are disconnected e.g. for inter or intra-hospital transfers, medical imaging or procedures in other departments, or when central line is changed (irrespective of how recently they were changed)\(^{28,29}\)

Intermittent disconnection of administration sets increases risk of infection through manipulation of the hub and contamination, and occlusion due to reflux of blood into the catheter tip.\(^{35}\)

Recommended intravenous administration line replacement frequencies outside of 72 - 96 hourly for the following infusions\(^2,6,7,12,26\)

- Lipids: 24 hourly
- Propofol: 6 - 12 hourly
- Total Parenteral Nutrition: 24 hourly
- Blood and Blood Products: 8 – 12 hourly.

All other Intravenous administration lines require replacing every 72 - 96 hourly\(^4,6,7,\); this also includes the changing of add-on devices\(^2\).

Synchronise intravenous administration line and add-on device replacement with changes in intravenous infusion bags\(^7\).

When a CVAD is removed and replaced, new administration sets are required. Administration sets used on the removed device are not to be transferred to the new device.

Document intravenous administration line replacement details in health record.
22. Appendix 5: CVAD - blood sampling

Pre-Procedure General Key Points
The cannula-end and administration set end (and the tops of the culture bottles, if taking blood cultures) are disinfected with 2% chlorhexidine in 70% alcohol, with care not to contaminate either before they are re-connected.\(^{28}\)

If taking blood for blood cultures – do not flush the catheter or discard withdraw volume as this may alter the culture result.\(^{29}\)

Refer to PathWest’s Recommended Order of Draw.

Important information
WACHS supports the endorsed Aseptic Technique framework guidance (as per the WACHS Infection Prevention and Control Policy) of cleaning catheter hubs or needle free connectors for a minimum of 20 seconds, longer if soiled and allowed to air dry.

When following eviQ Clinical Procedures, be aware of the above guidance in relation to the stated eviQ 60 second timeframe for cleaning of catheter hubs or needle free connectors.

Implanted venous port
Refer to eviQ Clinical procedure - implanted venous port (IVP) - blood sampling

Central venous catheter
Where possible, blood is not to be taken from central lines for blood tests. If there is no alternative, it must be done using aseptic technique and appropriate PPE.

Utilise the largest lumen available.\(^{2}\) If multiple lumen catheter in situ, dedicate one lumen to purpose. Undertake blood sampling from lumen with no continuous infusion in progress.

Equipment and procedure
Refer to eviQ Clinical procedure - central venous catheter - blood sampling

Additional items needed for blood culture sampling: aerobic and anaerobic blood culture bottles; 2 x 21g needles; 20 mL Luer lock syringe; and alcohol swabs

Blood Culture Sampling
To determine suspected central-line blood stream infection, undertake:
- one set collected from each lumen of the CVAD and,
- one set collected from separate peripheral venipuncture (refer to Specimen Collection (including Phlebotomy) and Pathology Results Clinical Practice Standard),
- both aerobic and anaerobic bottles are to be collected.
23. Appendix 6: CVC - dressing and needle free connector (NFC) change

Pre-procedure Key Points

Sterile, transparent semipermeable bordered dressings allow visualisation of the insertion site, and an additional anchor if properly maintained. Edges of the transparent dressing may need to be further secured (e.g. consider use of Fixomul® in diaphoretic patients).

Sterile gauze dressings may be used instead of the transparent dressing if the site is bleeding or the patient is diaphoretic or sensitive to adhesive dressings.

Staff are to use the WACHS CVAD forms to document insertion site dressings and site assessment.

Catheter migration

PICC lines can be measured without touching the line by reading the measurement on the PICC catheter. Measure external PICC / CVC catheter length from insertion site to the last etched ‘cm’ marking on the device at each dressing change (see Figure 6 for example of where last etched marking is located).

If prior to or during the dressing it is suspected that catheter migration has occurred:

- Contact medical officer to review
- A chest X-ray will be required to confirm catheter tip position and device safety for prolonged treatment
- CVAD may need to be replaced if the patient is receiving vesicant medications or if required for long term treatment
- CVAD lines that measure greater than the insertion measurement are not to be advanced into the vein

![Figure 6: Red arrow indicates the last etched marking used when measuring external catheter length (picture: Fiona Standley Hospital)](image-url)

Figure 6: Red arrow indicates the last etched marking used when measuring external catheter length (picture: Fiona Standley Hospital)
Dressing Changes

Examples of dressings:

- CVC - dressing insitu (RPH Bentley Group)
- CVC - Placement of statlock for dressing (Fiona Stanley Fremantle Hospital Group)
- CVC - Angle lumens downward avoiding catheter kinks (Fiona Stanley Fremantle Hospital Group)
- PICC dressing – SecurAcath securement device (Fiona Stanley Fremantle Hospital Group)
- PICC – Silver acticoat disk with tegaderm advanced dressing (Fiona Stanley Fremantle Hospital Group)
- PICC Dressing -Tegaderm CHG (Fiona Stanley Fremantle Hospital Group)
- CVC - Placement of statlock for dressing (Fiona Stanley Fremantle Hospital Group)
- CVC - Angle lumens downward avoiding catheter kinks (Fiona Stanley Fremantle Hospital Group)

Figure 7: Sample dressings for PICC and CVC

For PICCs and non-tunnelled CVCs – change the dressing 24hs post insertion\(^{31, 35}\), then as below.

Frequency is determined by dressing type and condition\(^2, 9\).

- Every 7 days for transparent, semipermeable bordered dressing.
- Every 2 days for sterile gauze dressing.
- Immediately if dressing integrity is compromised, moisture, blood or infection present.

The catheter insertion site to be visually inspected or palpated through the intact dressing to determine tenderness\(^2\) during review.

The process of dressing changes provides the opportunity to closely review and cleanse the insertion site\(^2\). Inspect for visible abnormalities. If any signs of localised infection take a swab for bacterial investigation MC&S and refer to medical officer for review (refer to Appendix 3 CVAD Site Assessment).

Sutureless securement device require changing every 7 days.

Where gauze is used, cover device dressing with waterproof cover when showering.

Where possible, align dressing changes with Needle Free Connector (NFC) change.
In case of excessive bleeding from insertion site, apply gauze pressure dressing over insertion site and cover with sterile transparent dressing. Direct manual pressure may be required. Notify medical officer for review. Remove gauze pressure dressing after 24 hours and replace with antimicrobial dressing30.

NFC Changes

Replace NFC as per manufacturer recommendations (every 7 days). Changing the NFC is also indicated if contamination or leaking occurs2.

Synchronise NFC change with flushing interval or administration set change, where appropriate.

If NFC found to be accidently disconnected, decontaminate lumen hub with a 2% chlorhexidine in 70% alcohol swab, attach new NFC and contact medical officer for review.

Some PICC’s do not have a slide clamp as they have an internal valve.

Equipment and procedure – dressing and NFC change

Refer to eviQ Clinical procedure - central venous access device - dressing and needleless injection cap change.

Important information

WACHS supports the endorsed Aseptic Technique framework guidance (as per the WACHS Infection Prevention and Control Policy) of cleaning catheter hubs or needle free connectors for a **minimum** of 20 seconds, longer if soiled and allowed to air dry.

When following eviQ Clinical Procedures, be aware of the above guidance in relation to the stated eviQ 60 second timeframe for cleaning of catheter hubs or needle free connectors.

Additional WACHS specific information to be noted:

- “Needleless injection cap” (referred to in eviQ) is a needle free connector (NFC) in WACHS
- Cleansing solution used is 2% chlorhexidine in 70% alcohol sticks/swab/wipes or solution. If contraindicated use povidone iodine 10% in 70% alcohol. If alcohol is contraindicated use 10% povidone iodine aqueous solution
- When considering using a combined chlorhexidine gluconate securement dressing, consult with product information for equipment requirements and procedure steps if utilised in preference to the dressing combination of:
 - sutureless securement device
 - chlorhexidine gluconate impregnated foam disk
 - sterile, transparent, semi-permeable IV dressing with site insertion details sticker.

 If patient has chlorhexidine allergy consider use of silver impregnated antimicrobial silver disk around the insertion site.
24. Appendix 7: CVAD – accessing, flushing, deaccessing and locking

For patients receiving haemodialysis with a tunnelled, cuffed and non-tunnelled, non-cuffed CVC – refer to the WACHS Vascular Access Devices Haemodialysis Catheter Lock Clinical Practice Standard.

Important information

WACHS supports the endorsed Aseptic Technique framework guidance (as per the WACHS Infection Prevention and Control Policy) of cleaning catheter hubs or needle free connectors for a **minimum** of 20 seconds, longer if soiled and allowed to air dry.

When following eviQ Clinical Procedures, be aware of the above guidance in relation to the stated eviQ 60 second timeframe for cleaning of catheter hubs or needle free connectors.

Flushing

Sodium Chloride 0.9% (up to 30ml for adults, as per the WACHS Medication Administration Policy) may be administered without prescription to maintain venous access patency and flushing, prior to and post prescribed medication, consider compatible diluents.

Monitor for complaints of pain and signs of infiltration or leakage from the insertion site. Report all concerns.

Regular flushing regimes for PICC and CVC to be determined based on considerations regarding the individual device and attachments being used, and the clinical requirements and situation of the patient.

Minimum frequency of flushing:
- Immediately post insertion
- Weekly if not in use to maintain patency unless occlusive problems indicate otherwise
- Post-bolus medication administration
- On completion of infusion
- Prior to and after blood sampling
- On changing NFC - ensure NFC is primed before connection

Administer flush 1 mL at a time, using a pulsating action (brisk push-pause) to create turbulence within the catheter, and end with applying positive pressure within the lumen (for non-valved catheters).

Do not forcibly administer flush. Consult with medical officer for advice.

CVAD lumens that are unable to be aspirated can be flushed (if migration has been excluded), EXCEPT for lumens containing vesicant medications Inotropes or Heparin.
Refer to Appendix 10 PICC Troubleshooting or Appendix 11 CVC Troubleshooting for further details or Appendix 8: CVAD – restoring patency – partial and complete occlusion.

If unable to flush CVAD refer to Appendix 10 PICC Troubleshooting or Appendix 11 CVC Troubleshooting.

Use a 2% chlorhexidine in 70% alcohol swab to decontaminate the NFC or hub post flush. If blood remains within the NFC despite clearing the lumen, change NFC.

Central venous catheter/PICC – accessing and flushing
Equipment and procedure refer to eviQ Clinical procedure - central venous catheter - accessing.

Central venous catheter/PICC – deaccessing
Equipment and procedure refer to eviQ Clinical procedure - central venous catheter – deaccessing.

Implanted venous ports - accessing and locking
Confirm the port is venous prior to use.

- Coring and non-coring needles:
 - Only non-coring needles of the appropriate length are to be used to access an implanted venous port
 - Hypodermic needles are not to be used to access ports, they will “core” or take pieces out of the septum with each access, where as non-coring needles will part the septum of the port and not damage it
 - 19G or 20G non-coring needles are used for blood sampling, blood product infusion or high rate infusion procedures such as medical imaging power injections
 - 22G non-coring needles are used for routine infusions or continuous infusion via ambulatory pumps

If using Power Port33 for Power Injectable Contrast, use of the appropriate pressure tested port needle is required (refer to manufactures guidelines).

- Needle length:
 - the needle should allow for penetration of subcutaneous tissue and the port septum into the port reservoir
 - If accessing port immediately post insertion allow for a longer length needle to accommodate post insertion swelling
 - Palpate the port to locate its depth. Choose the gauge and length of non-coring needle as indicated, commonly used lengths:
 - ¾” length for superficial ports
 - 1 ¼” length for deep ports

- Frequency of locking and needle changes:
As per manufacturer’s recommendations (can vary between 4-8 weeks) when device not in use i.e. “heparin locked”

- Re-needle every 7 days if having intermittent infusions or bolus medications
- Re-needle every 14 days if having continuous infusions, i.e. via ambulatory infusion device where line is interrupted weekly, in consultation with medical staff

Heparin is contraindicated in patients with Heparin-induced thrombocytopenia [HIT]. All patients are to be observed closely for signs is “HIT”. If present or suspected, discontinue use of heparin.

- Pre Procedure, Equipment and Procedure:
 Refer to eviQ Clinical procedure - implanted venous port (IVP) - accessing and locking

Implanted venous port – deaccessing and locking
Equipment and procedure:
Refer to eviQ Clinical procedure - implanted venous port (IVP) - deaccessing and locking.

25. Appendix 8: CVAD removal

Note: For removal of non-tunnelled haemodialysis catheters (refer to the WACHS Vascular Access Devices Removal Non-tunnelled Haemodialysis Catheter Clinical Practice Standard).

Air embolism

Air embolism is a preventable patient safety event.

Patient outcomes from air embolism range from no harm, to neurological impairment and death. It takes only a relatively small volume of air to cause an air embolism, and it also only takes a relatively small amount of time - just one to two seconds to occur.

Two circumstances must be present for an air embolism to occur:

1. Direct communication between the atmosphere and blood vessels [for the purpose of this CPS, this circumstance is met by a central venous access device (CVAD), or a patent venous tract after removal of a CVAD]; and

2. A pressure gradient which favours air entry into the vessel, that is the venous or intrathoracic pressure is lower than atmospheric pressure. This occurs during normal breathing and can be influenced by patient factors.

The signs and symptoms of an air embolism can be non-specific, subclinical and transient in nature, making diagnosis difficult.
Clinicians should be aware that if there is a temporal relationship between a patient’s sudden/unexpected deterioration and a CVAD clinical care activity (e.g. insertion, removal), a high index of suspicion between the two events should be considered.

Patient positioning influences the degree of the pressure gradient. **Patients should be supine** and if possible head slightly down (Trendelenburg) for insertion and removal of CVADs inserted to the neck or chest.

This positioning increases the central venous pressure at the insertion site and reduces risk of air entrainment. When patients are sitting up the pressure gradient favours air entry into the circulation.

Removal of implanted port

Ports require surgical removal in theatre or equivalent:

- Port removal, like insertion, requires meticulous technique to prevent air embolism and to maintain sterile conditions.
- Generally, the port pocket is incised, sutures holding the port body removed and the catheter is withdrawn from the vein.
- On removal the clinician should visually check the integrity of the line to ensure that the tip is present, the complete line has been removed and no breakage has occurred.

Upon removal, digital pressure should be applied by the clinician until haemostasis is achieved.

- A sterile occlusive dressing should be applied to the site.
- After port removal, the dressing should be changed and the site assessed every 24 hours by the clinician until the site is epithelialised.

Removal of PICC and CVC

Encountering resistance during removal:

- Generally PICCs can be removed with little resistance
- If resistance occurs, pause for 10-30 seconds before trying again
- If resistance continues, consider relaxation techniques such as: apply a warm compress to the insertion site and upper arm; offer a warm beverage; deep breathing exercise; administer a slow Sodium Chloride 0.9% flush then try again
- If resistance persists contact medical officer for review.

Pre-procedure key points

- Review coagulation status
- Review the reason for and order for removal
- Determine if blood cultures required. Refer to [Blood Sampling](#) for requirements. If required, consult with MO with regard to catheter tip for culture
- Ensure alternative venous access is gained prior to removal if required for ongoing clinical need
- Refer to insertion record prior to removal to determine details of catheter type and length of device
- Ensure correct patient positioning to prevent air embolus and bleeding
- Explain procedure and educate patient in the breathing technique used during removal
- Ensure all lumens are clamped prior to removal

Equipment and procedure

Refer to eviQ:

- Clinical procedure - non tunnelled central venous catheter (CVC) - removal
- Clinical procedure - peripherally inserted central venous catheter (PICC) – removal

Important information

WACHS supports the endorsed Aseptic Technique framework guidance (as per the WACHS Infection Prevention and Control Policy) of cleaning catheter hubs or needle free connectors for a **minimum** of 20 seconds, longer if soiled and allowed to air dry.

When following eviQ Clinical Procedures, be aware of the above guidance in relation to the stated eviQ 60 second timeframe for cleaning of catheter hubs or needle free connectors.

Post procedure

- Ensure application of:
 - local pressure for at least 2-3 minutes to the catheter site immediately post removal to promote haemostasis
 - air occlusive dressing for 24-48 hours
- Maintain supine position (or semi-fowlers if supine not tolerated) for between 30-60 minutes post-removal
- Observe patient for at least 30 minutes for any bleeding
- Visually check the integrity of the line to ensure that the tip is present, the complete line has been removed and no breakage has occurred.
- The removed line is measured and its length documented and checked against the length documented on insertion
- Documentation:
 - Inpatient - complete removal section of the MR179A WACHS Central Venous Access Device (CVAD) Insertion and Assessment Record
 - Outpatient - document in the health record.
26. Appendix 9: CVAD – restoring patency – partial and complete occlusion

Occasionally CVADs can become difficult to aspirate/flush and are blocked. If this occurs there are several strategies that can be used to unblock them.

Assess the possible causes:
- Kinked or clamped tubing
- Equipment failure
- Needle not inserted fully (implanted port)
- NFC not fully engaged
- Catheter may be blocked by drug precipitate or blood
- Catheter may be blocked by fibrin formation at tip or intraluminal clot
- Catheter may be wedged up against the blood vessel wall or have migrated to a smaller vessel
- Catheter may be fractured or kinked

Possible solutions to these problems include:
- Open clamps and check tubing and equipment.
- Check position of needle (implanted port) and reinsert if needed.
- Reposition patient’s head and shoulders (this may change the position of the catheter in the vessel).
- Ask the patient to:
 - Cough
 - Take a deep breath
 - Raise arms above head (this will attempt to change the position of the catheter in the vessel).
- Attempt to flush the catheter with a 10mL syringe containing sodium chloride 0.9%. **Do not use a syringe smaller than 10mL and do not use excessive force.**
- Alternate between gentle flushing and irrigation, to attempt to loosen the occluding material.
- Aspirate loosened material into the syringe; this procedure can take 5 to 10 minutes of persistence.
- If those methods are unsuccessful, then the instillation of a thrombolytic agent, maybe used if prescribed by a Medical Officer.
- Order a chest x-ray +/- a linogram with contrast medium
- Order a ultrasound of the affected vessels to identify deep vein thrombus
Refer to eviQ Clinical procedure - restoring patency to a central venous access device (CVAD) - partial and complete occlusion

Important information

WACHS supports the endorsed Aseptic Technique framework guidance (as per the WACHS Infection Prevention and Control Policy) of cleaning catheter hubs or needle free connectors for a *minimum* of 20 seconds, longer if soiled and allowed to air dry.

When following eviQ Clinical Procedures, be aware of the above guidance in relation to the stated eviQ 60 second timeframe for cleaning of catheter hubs or needle free connectors.

Additional information relating to occlusions can also be found in Appendix 10 PICC Troubleshooting or Appendix 11 CVC Troubleshooting.

27. Appendix 10: CVAD – discharge and transfer management

Patients being discharged with a CVAD in situ will require ongoing care and management of the device.

Prior to discharge, assess the patient’s physical and cognitive ability to care for the CVAD. Consider caregiver involvement as appropriate.

Ensure patients have been educated regarding the care and management of their device as well as signs and symptoms of complications that must be reported urgently.

Ensure follow up appointments are booked or referrals sent to an appropriate community service to facilitate ongoing care of the device.

Encourage the patient to report any concerns regarding their device to the discharge facility or GP.

Confirm the patient has received the relevant CVAD consumer information.

Document details of follow up appointments or referral and education provided to the patient/ carer in the health record.

If being transferred to another facility, ensure a copy of the MR179A WACHS Central Venous Access Device (CVAD) Insertion and Assessment Record, and if used, any of the CVAD Continuation Sheets are sent with the patient.
28. Appendix 11: PICC Troubleshooting

<table>
<thead>
<tr>
<th>Signs/Symptoms</th>
<th>Possible Causes</th>
<th>Suggested Actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Catheter Occlusion</td>
<td>External
• Kinked or clamped catheter<sup>13,14</sup>
Internal
• Chemical precipitation - can occur gradually causing sluggish flow or immediately causing total occlusion
• Lipid deposition
• Crystallisation of Total Parental Nutrition (TPN) mixture or drug incompatibilities</td>
<td>• Ensure line is unclamped
• Ensure positive pressure valve insitu
• Take down dressing and check for kinks. Realign if necessary
• Re-secure lumen/line and apply new dressing
• Check for drug compatibilities
• Use dedicated lumen for TPN<sup>15</sup>
• Ensure regular flushing of lumens
• for inpatients<sup>14</sup> using 10mL sodium chloride 0.9% using push/pause technique
• Contact Medical Officer</td>
</tr>
<tr>
<td>May observe blood or precipitate in lumen</td>
<td>Thrombus formation can originate outside or inside the catheter lumen
• Cause included venous stasis, vessel wall trauma or stenosis and hypercoagulable states<sup>13,14</sup>
• Performing blood pressure readings (utilizing a cuff) on the arm with a PICC insitu. Cuff pressure can cause bleeding at the insertion site, increasing the risk of thrombus formation and cause retrograde blood flow raising the risk of catheter occlusion<sup>16</sup>.</td>
<td>• Ensure regular flushing of lumens, using 10mL sodium chloride 0.9% and push/pause technique<sup>13,14</sup> until blood or precipitate is removed.
• Ensure NFC is connected to the device
• Contact Medical Officer.
• If unsuccessful consider fibrinolytic agent (e.g. Alteplase)<sup>13,14</sup> Seek specialist advice during consideration process</td>
</tr>
<tr>
<td>Partial Occlusion</td>
<td>Tip resting against a vein valve/wall
• Fibrin sheath formation
• Position of catheter</td>
<td>• Request patient to cough, take deep breaths, hunch shoulders, or change position.
• Document in patient health record.
• Liaise with Medical Officer.
• PICC may be rewired within 24 hours by appropriately trained medical officer to avoid reinsertion if malfunction present without infection<sup>4</sup>.</td>
</tr>
<tr>
<td>Signs/Symptoms</td>
<td>Possible Causes</td>
<td>Suggested Actions</td>
</tr>
<tr>
<td>---</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>Pain, visible swelling or fluid leaking from site: when PICC is flushed</td>
<td>• Malposition of catheter</td>
<td>• Stop infusion of fluids</td>
</tr>
<tr>
<td></td>
<td>• Fibrin sheath</td>
<td>• Notify Medical Officer, document in patient health record</td>
</tr>
<tr>
<td></td>
<td>• Internal or external catheter fracture</td>
<td>• Chest x-ray or venogram may be ordered</td>
</tr>
<tr>
<td></td>
<td>• Extravasation</td>
<td>• Consider removal of PICC – Liaise with Medical Officer</td>
</tr>
<tr>
<td>Infection</td>
<td>• Catheter Related Blood Stream Infection</td>
<td>• Liaise with Medical Officer</td>
</tr>
<tr>
<td>All venous access devices hold the potential risk for patients developing</td>
<td>• Pyrexia temperature 38°C +/- rigors after flushing lumens</td>
<td>• Medical Officer to consider removal of PICC and/or alternative IV access – consult</td>
</tr>
<tr>
<td>localised site and systemic blood stream infections either at the time of</td>
<td>• Tachycardia</td>
<td>with senior medical officer/specialist to discuss</td>
</tr>
<tr>
<td>insertion or whilst being</td>
<td>• Hypotension</td>
<td>• Document findings and actions taken in patient medical record</td>
</tr>
<tr>
<td>maintained3.</td>
<td>• Shock</td>
<td>• Take blood cultures from line and peripherally</td>
</tr>
<tr>
<td>Insertion Site</td>
<td>• Infection</td>
<td>• Monitor patient TPR, BP, SpO2, responsiveness – frequency determined by patient</td>
</tr>
<tr>
<td>• Inflammation, redness,</td>
<td></td>
<td>condition – escalate as indicated</td>
</tr>
<tr>
<td>tenderness +/- discharge at</td>
<td></td>
<td></td>
</tr>
<tr>
<td>exit site19.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Printed or saved electronic copies of this policy document are considered uncontrolled. Always source the current version from WACHS HealthPoint Policies.
<table>
<thead>
<tr>
<th>Signs/Symptoms</th>
<th>Possible Causes</th>
<th>Suggested Actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bleeding at exit site</td>
<td>• Difficult insertion/ number of punctures at site</td>
<td>• Apply digital pressure or pressure dressing to site for 5-15 minutes or as clinically indicated</td>
</tr>
<tr>
<td></td>
<td>• Coagulation abnormalities</td>
<td>• Consider topical thrombin dressing as prescribed</td>
</tr>
<tr>
<td></td>
<td>• Consider comorbidities, e.g. patients with liver abnormalities may continue to bleed following insertion</td>
<td>• Correction of coagulation – one or all of the following may be given: platelets/FFP/Vitamin K(^{21}) as prescribed</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Document bleeding in health record</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Inform Medical Officer and shift coordinator if prolonged bleeding</td>
</tr>
<tr>
<td>PICC line migration</td>
<td>• Over exertion, e.g. excessive coughing</td>
<td>• Access line and compare to insertion details</td>
</tr>
<tr>
<td></td>
<td>• Lifting heavy weights</td>
<td>• If discrepancy, escalate to Medical Officer for review</td>
</tr>
<tr>
<td></td>
<td>• Dressing insecure, or during dressing changes</td>
<td>• Do not push in extra external length</td>
</tr>
<tr>
<td></td>
<td>• Unknown</td>
<td></td>
</tr>
<tr>
<td>Extravasation:</td>
<td>The degree of patient harm is directly related to the infusions vesicant properties, the volume and length of time the infusion infiltrated the surrounding tissues</td>
<td>• Refer to Appendix 4: Complication - Extravasation of the Peripheral Intravenous Cannulae Management CPS</td>
</tr>
<tr>
<td>Where a vesicant solution breaches the venous wall and leaks into the surrounding tissues leading to tissue damage with potential for further harm.</td>
<td>Symptoms near the insertion site:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• burning or stinging pain, sudden 'heat'</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• taut skin and oedema</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• blanching and coolness of skin</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• slow or ceased infusion</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• damp or wet dressing.</td>
<td></td>
</tr>
</tbody>
</table>

Table contents with edits: Royal Perth Hospital: Nursing Practice Standard Central Line Insertion and Management, October 2016.
29. Appendix 12: CVC Troubleshooting

<table>
<thead>
<tr>
<th>Complications</th>
<th>Signs and symptoms</th>
<th>During insertion</th>
<th>Post insertion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pneumothorax</td>
<td>• Restlessness or anxiety</td>
<td>Monitor patient’s respiratory rate and general condition</td>
<td>• Monitor patient’s respiratory rate and general condition</td>
</tr>
<tr>
<td></td>
<td>• Dyspnoea</td>
<td>If concerned, discontinue procedure</td>
<td>• Routine post insertion CXR if subclavian or jugular vein insertion</td>
</tr>
<tr>
<td></td>
<td>• Cyanosis</td>
<td>Obtain urgent CXR</td>
<td>• If signs or symptoms evident:</td>
</tr>
<tr>
<td></td>
<td>• Pain on breathing</td>
<td></td>
<td>o Sit patient upright</td>
</tr>
<tr>
<td></td>
<td>• Oxygen desaturation</td>
<td></td>
<td>o Administer high flow oxygen</td>
</tr>
<tr>
<td></td>
<td>• Wheeze</td>
<td></td>
<td>o Seek urgent medical review</td>
</tr>
<tr>
<td>Arterial cannulation</td>
<td>• Pulsatile blood flow</td>
<td>• Remove line</td>
<td>• CXR shows CVC crossing the midline</td>
</tr>
<tr>
<td></td>
<td>• Bright red flashback</td>
<td>• Apply firm compression (but not bilateral neckcompression)</td>
<td>• Blood returns into CVC line despite flushing</td>
</tr>
<tr>
<td></td>
<td>• Large haematoma at injection site</td>
<td>• Observe the patient closely for haematoma development</td>
<td>• Actions as for during insertion</td>
</tr>
<tr>
<td></td>
<td>• patient complains of neurological symptoms (especially after injection of fluid/medicines)</td>
<td>• Datix CIMS form</td>
<td>• Monitor patient closely for neurological signs for at least 12 hours</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Datix CIMS form</td>
</tr>
<tr>
<td>Complications</td>
<td>Signs and symptoms</td>
<td>During insertion</td>
<td>Post insertion</td>
</tr>
<tr>
<td>---------------------------------------</td>
<td>---</td>
<td>--</td>
<td>---</td>
</tr>
</tbody>
</table>
| Air embolism/ catheter disconnect or | • Restlessness or anxiety
• Dyspnea/cyanosis
• Tachycardia/week pulse
• Altered consciousness (e.g. confusion)
• Visible catheter damage or leakage from line during use | • Position patient supine (with head down 30 degree tilt where possible)
• Ensure all CVC connections are secure | • Check all CVC connections and prevent further air entry (cap line with new positive pressure valve)
• Position patient in left Trendelenburg (head down at 30 degree tilt)
• Administer high flow oxygen
• Seek urgent medical review
• Monitor vital signs
• Complete Clinical Incident Notification via Datix CIMS
If visible damage:
• Clamp CVC between patient and damaged area, cover with sterile gauze
• Minimise patient movement
• Seek medical review and expert advice on management
• NB. Removal or repair of tunnelled catheters to be undertaken only by specialist staff |
| post-removal | | | |
| Arterial puncture | • Bright red blood
• Syringe fills more quickly than expected (when compared to venous)
• Blood leaves in a pulsing mode | • Apply direct pressure to site for 5 minutes to limit haematoma formation
• Monitor vital signs and document in health record
• Inform medical staff if tachycardia or hypotension occurs | N/A |
<table>
<thead>
<tr>
<th>Complications</th>
<th>Signs and symptoms</th>
<th>During insertion</th>
<th>Post insertion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cardiac tamponade</td>
<td>• Chest tightness or pain</td>
<td>• Administer high flow oxygen</td>
<td>Monitor clinical conditions and vital signs as indicated</td>
</tr>
<tr>
<td></td>
<td>• Shortness of breath</td>
<td>• Monitor vital signs</td>
<td>Request Medical Officer review as indicated by patient’s condition</td>
</tr>
<tr>
<td></td>
<td>• Muffled heart sounds</td>
<td>• Documented in health record</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Altered consciousness (as tamponade impairs myocardial contractility and result in loss of cardiac output)</td>
<td>• Activate MET/MER response if appropriate.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Prepare for pericardiocentesis (as directed by MO)</td>
<td></td>
</tr>
<tr>
<td>Catheter occlusion</td>
<td>• Inability to flush catheter</td>
<td>• Routine use of push/pause technique for lumen flushes</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Blood in lumen</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Inability to aspirate blood</td>
<td>External occlusion:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Note: partial obstruction may allow infusion of fluid but not aspiration</td>
<td>• Check for kinks (or clamp) and reassure line if indicated</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Cause of internal occlusion:</td>
<td>Internal occlusion:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>o CVC migration to smaller vein or resting on vein wall</td>
<td>• Ask patient to cough, take deep breaths, hunch shoulders or reposition</td>
<td></td>
</tr>
<tr>
<td></td>
<td>o Compression of CVC in superior vena cava between the clavicle and the first rib</td>
<td>• Attempt gentle irrigation with sodium chloride 0.9% using push/pause method alternating flushing and aspirating; do not exert excessive pressure or suction</td>
<td></td>
</tr>
<tr>
<td></td>
<td>o Constant wearing may result in damage to the integrity of the catheter</td>
<td>• If unable to remedy, or</td>
<td></td>
</tr>
<tr>
<td></td>
<td>o Other causes include chemical precipitation, lipid disposition or thrombus formation</td>
<td>• patient has signs or symptoms of a thrombus seek urgent Medical Officer review</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• CXR may be required to confirm tip position/exclude migration</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• If thrombus suspected – see next section</td>
<td></td>
</tr>
<tr>
<td>Complications</td>
<td>Signs and symptoms</td>
<td>During insertion</td>
<td>Post insertion</td>
</tr>
<tr>
<td>---------------</td>
<td>--------------------</td>
<td>-----------------</td>
<td>---------------</td>
</tr>
<tr>
<td>Thrombus</td>
<td>• Swelling</td>
<td>• Seek urgent Medical Officer review</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Pain, numbness or tingling</td>
<td>• Monitor vital signs</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Coolness, swelling or venous engorgement, discoloration of neck, chest or arm (on side of CVC)</td>
<td>• Consider need for oxygen therapy</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Coolness, swelling or venous engorgement, discoloration of neck, chest or arm (on side of CVC)</td>
<td>• Consider fibrinolytic agent (e.g. Alteplase). Seek specialist advice during consideration process.</td>
<td></td>
</tr>
<tr>
<td>Infection</td>
<td>• Site infection and tunnel infection:</td>
<td>• Review need for CVC daily</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Local pain or inflammation</td>
<td>• Minimise breaks in the closed circuit</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Cellulitis or tracking within 2cm of exit site</td>
<td>• Other routine care including hand hygiene, site monitoring, line change/lumen flushing as detailed in CPS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Exudate or purulent discharge at site</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Fever</td>
<td>• Fever (usually >38°C, not attributed to any other causes)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Systemic infection:</td>
<td>• Malaise</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Fever (usually >38°C, not attributed to any other causes)</td>
<td>• Rigors</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Local pain or inflammation</td>
<td>• Rigors (particularly on flushing line)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Cellulitis or tracking within 2cm of exit site</td>
<td>• Chills</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Exudate or purulent discharge at site</td>
<td>• Hypotension</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Fever</td>
<td>• Other signs of shock may develop so close observation is required</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Systemic infection:</td>
<td>• Review need for CVC daily</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Fever (usually >38°C, not attributed to any other causes)</td>
<td>• Minimise breaks in the closed circuit</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Local pain or inflammation</td>
<td>• Other routine care including hand hygiene, site monitoring, line change/lumen flushing as detailed in CPS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Cellulitis or tracking within 2cm of exit site</td>
<td>• Fever (usually >38°C, not attributed to any other causes)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Exudate or purulent discharge at site</td>
<td>• Malaise</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Fever</td>
<td>• Rigors</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Systemic infection:</td>
<td>• Rigors (particularly on flushing line)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Fever (usually >38°C, not attributed to any other causes)</td>
<td>• Chills</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Local pain or inflammation</td>
<td>• Hypotension</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Cellulitis or tracking within 2cm of exit site</td>
<td>• Other signs of shock may develop so close observation is required</td>
<td></td>
</tr>
</tbody>
</table>

All venous access devices hold the potential risk for patients developing localised site and systemic bloodstream infections either at the time of insertion or whilst being maintained.

If local infection is suspected:
- Inform Medical Officer and Shift Coordinator, review management plan and need for CVC
- Take swab of site if exudate present
- Consider antibiotic therapy
- Document in health record

If signs of systemic infection:
- Inform Medical Officer and Shift Coordinator and review management plan
- Monitor closely for signs of shock Remove CVC if no longer needed
- Obtain paired blood cultures (from CVC and peripheral vein) prior to commencing antibiotics.
- Notify infection control and complete Datix CIMS.
Complications

<table>
<thead>
<tr>
<th>Extravasation: Where a vesicant solution breaches the venous wall and leaks into the surrounding tissues leading to tissue damage with potential for further harm.</th>
<th>Signs and symptoms</th>
<th>During insertion</th>
<th>Post insertion</th>
</tr>
</thead>
</table>
| The degree of patient harm is directly related to the infusions vesicant properties, the volume and length of time the infusion infiltrated the surrounding tissues | Symptoms near the insertion site:
- burning or stinging pain, sudden ‘heat’
- taut skin and oedema
- blanching and coolness of skin
- slow or ceased infusion.
- damp or wet dressing. | Refer to Appendix 4: Complication - Extravasation of the Peripheral Intravenous Cannulae Management CPS |

Table content from: Royal Perth Hospital: Nursing Practice Standard Central Line Insertion and Management, October 2016.

30. Appendix 13: Arterial Ports

General Information

Always confirm the type of port before accessing it.

Arterial ports are:

- Used less frequently
- Usually exit into the common hepatic artery for a specific drug or radioisotope therapy, with the port body often found in the sternum, lower ribs or hip
- Always single lumen ports
- Used for the administration of chemotherapy or radioisotopes, however trans-arterial chemotherapy and/or radioisotopes are not administered at WACHS sites

Figure 8: Femoral arterial access port
Insertion

Arterial ports are inserted in theatre under a general anaesthetic by laparotomy or laparoscopy, and require a general anaesthetic to remove them. Removal is not covered in this CPS.

Accessing/needling, flushing and deaccessing

- **Coring and non-coring needles:**

 - Hypodermic needles will “core” or take pieces out of the septum with each access, whereas non-coring needles will part the septum of the port and not damage it.

 - 19G or 20G needles are used for blood sampling, blood product infusion or high rate infusion.

 - 22G needles are used for routine infusions or continuous infusion via ambulatory pumps.

- **Needle length**

 - The needle should allow for penetration of subcutaneous tissue into port reservoir.

 - If accessing port immediately post insertion allow for a longer length needle to accommodate post insertion swelling.

 - ¾” length for superficial ports.

 - 1 ¼” length for deep ports.

- **Frequency of locking and needle changes**

 - Every week for “heparin lock”

 - Needles are not to remain in situ without an infusion in progress.

 Heparin is contraindicated in patients with Heparin-induced thrombocytopenia [HIT] all patients are be observed closely for signs is “HIT”. If present or suspected, discontinue use of heparin.

- **Flushing**

 Arterial ports are NEVER to be aspirated.

 Once correct needle position is established it is to be flushed with 20ml of 0.9% sodium chloride using a push pause technique.

 If accessed and needle remains in situ, ensure a continuous infusion is in progress via a dedicated pump to maintain catheter patency.

- **Equipment and procedure**

 The equipment and procedure is the same as for venous ports – refer to eviQ:

 - [Clinical procedure - implanted venous port (IVP) - accessing and locking](#)
• **Clinical procedure - implanted venous port (IVP) - deaccessing and locking.**

Important information

WACHS supports the endorsed Aseptic Technique framework guidance (as per the WACHS Infection Prevention and Control Policy) of cleaning catheter hubs or needle free connectors for a **minimum** of 20 seconds, longer if soiled and allowed to air dry.

When following eviQ Clinical Procedures, be aware of the above guidance in relation to the stated eviQ 60 second timeframe for cleaning of catheter hubs or needle free connectors.